节点文献

基于格子Boltzmann方法的热毛细对流数值模拟研究

免费订阅

【作者】 朱诚郑林

【Author】 Zhu Cheng;Zheng Lin;School of Energy and Power Engineering,Nanjing University of Science and Technology;

【机构】 南京理工大学能源与动力工程学院

【摘要】 为研究Prandtl(Pr)数和纵横比(Ar)对侧壁差异加热的矩形液池内热毛细对流的影响,利用基于双密度分布函数的格子玻尔兹曼(Boltzmann)方法进行二维数值模拟。引入速度偏离率和偏差温度,分别衡量速度的波动和热毛细对流对温度场的影响。结果表明:热毛细对流随着Pr(0.1~100)的减小或Ar(0.2~2)的增大而增强;当热毛细对流较强时速度的波动也增强了,同时能量在冷壁端部积聚;当其它参数恒定而Pr在10~100范围内变化时,温度场几乎不变;当Ar≥1时,Ar对自由表面的速度和温度分布影响很小。

【基金】 国家自然科学基金(51506097);江苏省自然科学基金(BK20130750)
  • 【DOI】10.14177/j.cnki.32-1397n.2017.41.06.018
  • 【分类号】O363.2
  • 【下载频次】23
节点文献中: 

本文链接的文献网络图示:

浏览历史:
下载历史: