文献知网节
  • 记笔记

Slice Localization for Three-Dimensional Breast Ultrasound Volume Using Deep Learning

Tai-feng YU1Paul LIU2Yu-lan PENG3Jing-yan LIU3Hao YIN1Dong C LIU1

1. Sichuan University, College of Computer Science2. Stork Healthcare Co., Ltd3. West China Hospital, Department of Ultrasound

摘要:In routine ultrasonography, slice images of the internal organs of the human body are usually generated through an 1 D array probe. The position and orientation of the probe is adjusted manually to obtain slice planes with pathological features. This is quite dependent on the experience and technique of a sonographer. This paper aims to locate 2 D slice planes in a 3 D breast ultrasound volume, which has significant application value in clinical ultrasound examinations. We propose a deep learning approach mapping all possible 2 D image slices to their 3 D coordinates parameters using a fully connected neural network implemented on MATLAB. We emphasize that this training must be done separately for each patient since the mammary tissue structure varies greatly from one person to another. The trained network can be interpreted as an image-slice location database for each patient. Our study is validated on GE ABUS(Automated Breast Ultrasound System) volume data. Each 2 D image slice has four spatial parameters. The method achieves a prediction error of 0.14 mm/0.25 mm and 0.5 degree/0.3 degree for translation(x/y) and rotation(yaw/roll) parameters respectively, averaged over all practically scannable slices. It takes less than 0.1 ms to predict the location of one 64×64 slice image. Thus, slice locations may be displayed with high accuracy in real-time when scanning with a conventional 1 D probe, potentially allowing physicians to manipulate the probe to any scan planes of interest.
会议名称:

2019 International Conference on Informatics, Control and Robotics (ICICR 2019)

会议时间:

2019-06-16

会议地点:

中国上海

  • 专辑:

    医药卫生; 电子技术及信息科学

  • 专题:

    外科学; 计算机软件及计算机应用; 自动化技术

  • DOI:

    10.26914/c.cnkihy.2019.077870

  • 分类号:

    R655.8;TP18;TP391.41

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

页码:264-270 页数:7 大小:800k

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频