文献知网节
  • 记笔记
摘要:The maintenance of power transmission system appeals automatic inspection system to replace manual inspection. Inspection based on Unmanned Aerial Vehicle(UAV) generates a huge number of photos to be processed. These aerial photos have several challenging features:high density,small,scale variation. In order to ameliorate the performance on detection of important objects as insulators and pin bolts,an efficient multiscale training algorithm called SNIPER is introduced. SNIPER enhanced Faster RCNN was trained on a powerline dataset for object detection. SNIPER provides a good average precision and average recall on large objects like insulators and medium objects with adequate annotated instances like pin bolts and dampers. However,SNIPER fails to locate missing pin or displaced pin,possibly due to their similarity to pin bolts. Future development of a SNIPER-based cascaded detection scheme could help detect defected small objects.
会议名称:

The 2020 International Conference on Ubiquitous Power Internet of Things (UPIOT 2020) and 4th International Symposium on Green Energy and Smart Grid (SGESG 2020)

会议时间:

2020-08-20

会议地点:

中国陕西西安

  • 专辑:

    工程科技Ⅱ辑; 信息科技

  • 专题:

    电力工业; 计算机软件及计算机应用

  • DOI:

    10.26914/c.cnkihy.2020.033063

  • 分类号:

    TP391.41;TM75

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:1 页码:37-42 页数:6 大小:1066k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频