文献知网节
摘要:It is crucial to correctly predict the passenger flow of an air route for the construction and development of an airport. Based on the passenger flow data of Sanya Airport from 2008 to 2016, this paper respectively adopted Holt-Winter Seasonal Model, ARMA and linear regression model to predict the passenger flow of Sanya Airport from 2017 to 2018. In order to reduce the prediction error and improve the prediction accuracy at meanwhile, the combinatorial weighted method is adopted to predict the data in a combined manner.Upon verification, this method has been proved to be an effective approach to predict the airport passenger flow.
会议名称:

The Third International Conference of Pioneering Computer Scientists, Engineers and Educators,ICPCSEE 2017(originally ICYCSEE)

会议时间:

2017-09-22

会议地点:

中国湖南长沙

  • 专辑:

    工程科技Ⅱ辑

  • 专题:

    航空航天科学与工程

  • 分类号:

    V354

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

温馨提示:阅读CAJ格式原文,请使用CAJ浏览器

下载:64 页码:200-201 页数:2 大小:100k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频