文献知网节
  • 记笔记
摘要:As the way of Internet information transfer, web news plays a significant role in information sharing. Considering that web news usually contains a lot of content, after in-depth analysis, we found that not all content is related to the news topic, and a lot of web news contains some noise content, and these noises content have serious interference to the text classification task. So, how to filter noise and purify web news content to improve the accuracy of web news classification has become a challenging problem. In this paper, we proposed a web news classification method via fusing noise detection, BERT-based semantic similarity noise filtering and convolutional neural network(NF-CNN) to solve the problem. In order to comprehensively evaluate the performance of the method,we use the Chinese public news classification dataset to evaluate it.The experimental results demonstrate that our method can effectively detect and filter a lot of noise text and the average F1 score can reach 95.61% on web news classification task.
会议名称:

2020 2nd Symposium on Signal Processing Systems (SSPS 2020)

会议时间:

2020-07-11

会议地点:

中国广东广州

  • 专辑:

    信息科技

  • 专题:

    计算机软件及计算机应用; 自动化技术

  • DOI:

    10.26914/c.cnkihy.2020.046582

  • 分类号:

    TP183;TP391.1

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:8 页码:45-50 页数:6 大小:987k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频