文献知网节
摘要:In this Paper, an enhanced agglomerative fuzzy KMeans clustering algorithm with the MapR educe implementation is proposed. In this algorithm, an initial center selection method is introduced toimprove the accuracy and increase the convergence speed of the agglomerative fuzzy k-means algorithm. Then, a MapR educe implementation based on Apache Hadoop is presented toincrease the scalability for large scale datasets. Experiments were respectively conducted on a synthetic data set, the WINE dataset from UCI Repository and a randomly generated large dataset. The experimental results show that the proposed algorithm can identify true cluster number and produce accurate result with good scalability on large dataset.
会议名称:

2014 IEEE International Conference on Progress in Informatics and Computing

会议时间:

2014-05-16

会议地点:

中国上海

  • 专辑:

    信息科技

  • 专题:

    计算机软件及计算机应用

  • 分类号:

    TP311.13

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

温馨提示:阅读CAJ格式原文,请使用CAJ浏览器

下载:24 页码:510-514 页数:5 大小:419k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频