文献知网节
  • 记笔记
摘要:Composition identification is an important topic of science research.With the help of spectral analysis,it can be completed much faster.However,the effectiveness of spectral analysis highly depends on reliability of reference spectrums and similarity measurement formulas.To overcome main obstacles of spectral analysis,the paper presents new concept of composite classification and three fundamental methods,Direct Similarity,Feature Series and Weighted Feature Series.Firstly these methods involve discretization and reduction in help lifting precision and reducing computational complexity.Then they compute similarities by their own criterion separately and finally make judgments to give out results.The experimental results prove the effectiveness and efficiency of these methods on composition identification of real world dataset.
会议名称:

2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems

会议时间:

2014-11-27

会议地点:

中国深圳、中国香港

  • 专辑:

    基础科学

  • 专题:

    物理学

  • 分类号:

    O433.4

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:2 页码:298-302 页数:5 大小:551k

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频