文献知网节
  • 记笔记
摘要:Clustering is one of the most important task in data mining.But for big data application,clustering models are faced with the problem of high complexity for low respond time requirement.This paper focuses on velocity criterion of big data modeling,presents a developed k-means algorithm,k-means+,which effectively reduces time costs of clustering modeling through block operation and redesigning of distance function.Block operation aggregates instances as blocks to cluster afterwards.Manhattan distance is used instead of common Euclidean distance to simplify calculation.Experimental results show that k-means+ works well on most testing datasets and executes much faster than original k-means.
会议名称:

2016 4th IEEE International Conference on Cloud Computing and Intelligence Systems(IEEE CCIS2016)

会议时间:

2016-08-17

会议地点:

中国北京

  • 专辑:

    信息科技

  • 专题:

    计算机软件及计算机应用

  • 分类号:

    TP311.13

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:8 页码:168-171 页数:4 大小:299k

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频