文献知网节
  • 记笔记
摘要:In spectral quantitative analysis, the accuracy and complexity of the designed prediction model will be negatively affected by enormous data volume and noise of the original spectrum. This paper presents a dimensionality reduction and noise decreasing method for original spectrum analysis based on Fourier series fitting(FSF). By extracting features using FSF, the original spectrum data will be mapped into Fourier series, and a regression prediction model using partial least squares(PLS) is established. The experimental analysis suggests that FSF method, compared with PLS, discrete fourier transform(DFT), artificial neural networks(ANNs) and genetic algorithm with PLS(GAPLS), can produce better results considering the running time, the number of input variables and prediction accuracy.
会议名称:

2017 IEEE 8th International Conference on Software Engineering and Service Science

会议时间:

2017-11-24

会议地点:

中国北京

  • 专辑:

    基础科学

  • 专题:

    物理学

  • 分类号:

    O433.4

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:6 页码:261-264 页数:4 大小:299k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频