文献知网节
  • 记笔记
摘要:It is not common for electric company that arrears can be found accurately and in time. This phenomenon leads to shortage of arrears data. It also cause process of predicting arrears can not be further developed. Stratified sampling has become a general solution to the problem. In this paper, a new method for arrears prediction is proposed, which uses Wgan-Gp(Improved Training of Wasserstein GANs) to simulate the real data and then generate fake data to predict arrears with DBN. Electric power data(256 indicators), like the image pixel(16*16), is used as input of the Wgan-Gp to train the generator. For the first time, this paper convert the prediction of arrears time to prediction of arrears interval. Next, we design a series of relevant indicators for experiment, which proves that the prediction accuracy can be improved with analogue data generated by Wgan-Gp.
会议名称:

2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC 2017)

会议时间:

2017-12-15

会议地点:

中国四川成都

  • 专辑:

    工程科技Ⅱ辑; 经济与管理科学

  • 专题:

    电力工业; 工业经济

  • 分类号:

    F426.61

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:28 页码:1702-1705 页数:4 大小:930k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频