文献知网节
  • 记笔记

A Collaborative Filtering Recommendation Algorithm Based On Conditional Entropy Trust Model

Yitao WuXingming ZhangXiaofeng QiErning XiaoLiang Jin

National Digital Switching System Engineering and Technological R&D Center

摘要:The traditional collaborative recommendation algorithm doesn’t take the non-linear dependence between users into consider, which is not accurate enough in prediction. The collaborative filtering algorithm based on entropy can measure the nonlinear characteristics of users, but it can’t reasonably describe the relationship between users and is subject to sparsity. To address this problem, conditional entropy trust model is proposed, which uses the conditional entropy to describe the non-linear dependence between users, and Laplace estimation is introduced to alleviate sparsity. A collaborative filtering algorithm based on the conditional entropy trust model(CECF) is designed. The experiments show that this algorithm doesn’t increase the time complexity and significantly improve the degree of accuracy.
会议名称:

2016 3rd International Conference on Materials Engineering,Manufacturing Technology and Control(ICMEMTC 2016)

会议时间:

2016-02-27

会议地点:

中国山西太原

  • 专辑:

    信息科技

  • 专题:

    计算机软件及计算机应用

  • 分类号:

    TP391.3

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:3 页码:460-466 页数:7 大小:776k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频