文献知网节
摘要:Real-time detection of the degree of corn peeling is important to determine the operational status of the corn harvester. This paper presents a method to detect shucked corn. First, moving objects are detected from the background by using Gaussian Mixture Model(GMM) and morphological operations. Then, texture features, called Local Binary Pattern(LBP) features, are computed from multi-scale foreground images. Finally these texture features are sent to a trained support vector machine, which makes the decision whether a corn is shucked or not. Owing to the post-processing on the foreground image segmented after background modeling, our method can filter out redundant noise points. Due to the prominent difference of the LBP features of different objects, our method can make classification more robustly.Therefore, our method is accurate and efficient in the task of shucked corn detection, which is confirmed by experimental results.
会议名称:

第31届中国控制与决策会议

会议时间:

2019-06-03

会议地点:

中国江西南昌

  • 专辑:

    农业科技; 信息科技

  • 专题:

    农业工程; 计算机软件及计算机应用

  • 分类号:

    S225.51;TP391.41

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

温馨提示:阅读CAJ格式原文,请使用CAJ浏览器

下载:3 页码:669-673 页数:5 大小:990k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频