文献知网节

Prediction of Tomato Yield in Chinese-Style Solar Greenhouses Based on Wavelet Neural Networks and Genetic Algorithms

Ruimin XiaoYonggang WangYuhang LiuYizhi YinTan LiuNannan Zhang

College of Information and Electrical Engineering,Shenyang Agricultural University

摘要:Yield prediction for tomatoes in greenhouses is an important basis for making production plans,and yield prediction accuracy directly affects economic benefits.To improve the prediction accuracy in Chinese-style solar greenhouses(CSGs),a wavelet neural network(WNN) model optimized by a genetic algorithm(GA-WNN) is applied.Eight variables are selected as input parameters,such as the CO2 concentration and ambient humidity.The tomato yield is the prediction output.The GA is used to optimize the initial weights,thresholds,and translation factors of the WNN.The experiment results show that the mean relative errors(MREs) of the GA-WNN model,WNN model,and backpropagation BP neural network model are 0.0067,0.0104,and 0.0242,respectively.The results root mean square errors(RMSEs) are 1.725,2.520,and 5.548,respectively.The EC values are 0.9960,0.9935,and 0.9868,respectively.Therefore,the GA-WNN model has a higher prediction precision and a better fitting ability when compared with the BP and the WNN prediction models.The GA-WNN model can overcome the shortcomings of slow convergence and finding local optimums with typical WNN models.The research of this paper is useful from both theoretical and technical perspectives for quantitative tomato yield prediction in the CSGs.
会议名称:

第33届中国控制与决策会议

会议时间:

2021-05-22

会议地点:

中国云南昆明

  • 专辑:

    农业科技; 信息科技

  • 专题:

    园艺; 园艺; 自动化技术

  • DOI:

    10.26914/c.cnkihy.2021.030578

  • 分类号:

    S626;S641.2;TP18

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

温馨提示:阅读CAJ格式原文,请使用CAJ浏览器

下载:8 页码:415-420 页数:6 大小:1795k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频