文献知网节
  • 记笔记

Prediction of Exhaust Gas Temperature Margin Based on LSSVR

Dai ShaowuChen QiangqiangDai Hongde

Naval Aviation University

摘要:Exhaust gas temperature is one of the important performance characterization parameters of the state of engine. The prediction analysis of the Exhaust Gas Temperature Margin(EGTM) series is helpful to estimate engine’s performance, which can offer theory support for the fault detection and diagnose. Aiming at the non-linear and non-stationary features of EGTM data, a prediction method based on Empirical Mode Decomposition(EMD) and Least Squares Support Vector Regression(LS-SVR) is proposed. The EMD method is used to decompose the EGTM data to reduce the complexity of the time series. The EGTM data were decomposed into Intrinsic Mode Function(IMF) and the residual series by EMD. Finally, the prediction model were build the different LS-SVR for predicting each IMF and the residual series. Each prediction results of the series were combined to obtain EGTM forecast results. The results show that compared with the traditional prediction method, RMSE and MAE are reduced to 2.3178 and 1.8388, which improves the prediction accuracy effectively.
会议名称:

第三十八届中国控制会议

会议时间:

2019-07-27

会议地点:

中国广东广州

  • 专辑:

    工程科技Ⅱ辑; 信息科技

  • 专题:

    动力工程; 自动化技术

  • 分类号:

    TK401;TP181

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:7 页码:502-506 页数:5 大小:291k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频