文献知网节
  • 记笔记

Deep Embedding GAN-based Model for Anomaly Detection on High-dimensional Sparse Data

Chaojun WangYaping DaiWei Dai

Beijing Institute of TechnologyAllseeing Security

摘要:The use of Generative Adversarial Nets(GAN) for anomaly detection has been explored recently. However, in the case of high-dimensional sparse data, existing GAN-based anomaly detection models suffer from inefficient dimensionality reduction,computationally costly data reconstruction, and suboptimal performance limited by the training objective. In this paper, a deep embedding GAN-based model is developed for anomaly detection on high-dimensional sparse data. In the model, dimensionality reduction of input data is performed by embeddings efficiently. With the bidirectional Wasserstein GAN, data reconstruction is conducted in the input dense representation space at a low computational cost. The objective function defined by the Wasserstein distance and Lipschitz continuity constraints stabilizes training and improves model performance. Experimental results on public datasets show that, the developed model has comparable or superior performance over the competing techniques, and achieves up to 8.81% relative improvement based on the area under the Receiver Operating Characteristics curve(AUC).
会议名称:

第三十八届中国控制会议

会议时间:

2019-07-27

会议地点:

中国广东广州

  • 专辑:

    信息科技

  • 专题:

    自动化技术

  • 分类号:

    TP274

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:7 页码:1200-1204 页数:5 大小:356k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频