文献知网节
  • 记笔记
摘要:Automatic music transcription(AMT) transforms the musical audio content into symbolic notations,including onsets,offsets and pitches.In this paper,we designed a polyphonic piano transcription system based on Convolutional Neural Network(CNN),and it improves the note-level results.Our proposed method has two advantages:Firstly,A CNN model is used to detect the onset event and align the onsets of the notes into more accurate position.Secondly,the other CNN model is used to detect the onsets of 88 notes.And we improve the model’s performance by using dual-channel spectrogram as input,appropriate number of convolution layers and the weights for the positive samples in loss function.The public dataset of MAPS is adopted to train and evaluate.Finally,in the ’ENSTDkCl’ subset,our proposed solution achieves 85.15% on note-level F1-measure.To the best of our knowledge,the result is highest F1-measure scores in the state of art.
会议名称:

2019 The 9th International Workshop on Computer Science and Engineering (WCSE 2019)

会议时间:

2019-06-15

会议地点:

中国香港

  • 专辑:

    哲学与人文科学; 信息科技

  • 专题:

    音乐舞蹈; 自动化技术

  • DOI:

    10.26914/c.cnkihy.2019.038241

  • 分类号:

    J624.1;TP183

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:4 页码:449-456 页数:8 大小:1202k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频