文献知网节
  • 记笔记

Performance Comparison of Different CNN models for Indian Road Dataset

Abhishek Mukhopadhyay1Pradipta Biswas1Ayush Agarwal2Imon Mukherjee2

1. Indian Institute of Science2. Indian Institute of Information Technology

摘要:Recent advancement in the field of computer vision and development of Deep Neural Network based object detection led researchers and industries to focus on autonomous vehicles. This paper aims to find how accurately previously proposed CNN architectures detect on-road obstacles in Indian road scenarios in the context of autonomous vehicle. We have compared three different convolution neural networks trained with COCO dataset for detecting autorickshaws in Indian road. We undertook statistical hypothesis testing to find effect of these three models, i.e. YOLOv3, Mask R-CNN, and Retina Net on detection accuracy rate. While measuring accuracy, we have noted that detection accuracy rate of Retina Net is significantly better than other two CNN architectures. Although there is no significant difference between other two networks in context of detection rate. The accuracy rate shows the performance of Retina Net invariant to autorickshaws’ color and shape, and different climatic and complex background scenarios.
会议名称:

The 3rd International Conference on Graphics and Signal Processing (ICGSP 2019)

会议时间:

2019-06-01

会议地点:

中国香港

  • 专辑:

    信息科技

  • 专题:

    计算机软件及计算机应用; 自动化技术

  • DOI:

    10.26914/c.cnkihy.2019.042204

  • 分类号:

    TP391.41;TP183

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:1 页码:30-34 页数:5 大小:367k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频