文献知网节
  • 记笔记
摘要:The data of Internet of Vehicles(IoV) can be used to evaluate the driving safety risk of auto insurance policyholder and provide technical means for Usage Based Insurance(UBI).There are many types of IoV data,such as continuous or ordinal,categorical,binary etc.,which contain highly sparse and dimensional features after One-Hot processing,thus they learning the interaction between critical features and training predictive model difficult.Furthermore,some of the available data have been desensitized,so it is impossible to perform feature engineering based on experience.We propose an end-to-end deep learning framework named Deep Attentional Factorization Machine(DeepAFM),which combines the power of attentional factorization machine with deep learning for feature learning in a new neural network architecture.Compared with existing deep learning models,our approach can learn the weighted interactions between various features effectively by introducing the structure of feature fields without feature engineering.Experimental results showed that our model yields excellent results in real-world data.
会议名称:

2019计算智能、工程与信息技术世界大会

会议时间:

2019-06-29

会议地点:

中国上海

  • 专辑:

    工程科技Ⅱ辑; 信息科技

  • 专题:

    汽车工业; 自动化技术

  • DOI:

    10.26914/c.cnkihy.2019.048738

  • 分类号:

    U463.6;TP18

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:13 页码:592-599 页数:8 大小:1087k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频