文献知网节
摘要:Recovering a clear image from single hazy image has been widely investigated in recent researches. Due to the lack of the real hazed image dataset, most studies use artificially synthesized dataset to train the models. Nonetheless, the real word foggy image is far different from the synthesized image. As a result, the existing methods could not defog the real foggy image well, when inputting the real foggy images. In this paper, we introduce a new dehazing algorithm, which adds cycle consistency constraints to the generative adversarial network(GAN). It implements the translation from foggy images to clean images without supervised learning,that is, the model does not need paired data to training. We assume that clear and foggy images come from different domains.There are two generators that act as domain translators, one from foggy image domain to clean image domain, and the other from foggy image to clean image. Two discriminators in the GAN are used for assessing each domain translator. The GAN loss, combined with the cycle consistency loss are used to regularize the model.We carried out experiments to evaluate the proposed method, and the results demonstrate the effectiveness in dehazing and there is indeed difference between the real-fog images and the synthetic images.
会议名称:

2021 3rd International Conference on Advanced Information Science and System (AISS 2021)

会议时间:

2021-11-26

会议地点:

中国海南三亚

  • 专辑:

    信息科技

  • 专题:

    计算机软件及计算机应用; 自动化技术

  • DOI:

    10.26914/c.cnkihy.2021.052264

  • 分类号:

    TP391.41;TP18

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

温馨提示:阅读CAJ格式原文,请使用CAJ浏览器

下载:11 页码:480-486 页数:7 大小:368k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频