文献知网节

A Fast Optimization Algorithm Based on Multi-RBF For High-Dimensional and Computationally Expensive Problems

Mengtian WuLingling WangQianyi LuPengjie HuJin Xu

College of Water Conservancy and Hydropower Engineering,China,Hohai University

摘要:Optimization problems of the numerical model in the engineering field usually involve many undetermined parameters and computationally expensive simulations. Using evolutionary algorithms alone is inefficient because it takes up thousands of engineering simulations to obtain a good solution. Recently, surrogate-assisted evolutionary algorithms have been widely researched, which train a surrogate model(GP, RBF, SVM) to replace mostly computation of origin engineering model. But most surrogate model-based algorithms still require more than 1000 times evaluations to get reasonable solutions by origin model. To further improve optimization efficiency, a new ensemble surrogate modeling-based and some novel in-fill strategies-assisted fast optimization algorithm(ESMO) is proposed for solving high-dimensional and computationally expensive problems in this work. ESMO employs Radial Basis Function Neural Network(RBF) as a surrogate model. ESMO prepares three different methods to build multi-RBF and corresponding in-fill strategies to trade-off exploration and exploitation. To guarantee fast optimization, a constraint-region method is also applied. Empirical studies demonstrate that ESMO shows much better performance than other state-of-the-art algorithms within 500 function evaluations.
会议名称:

2021年第四届算法、计算和人工智能国际会议

会议时间:

2021-12-22

会议地点:

中国海南三亚

  • 专辑:

    信息科技

  • 专题:

    自动化技术

  • DOI:

    10.26914/c.cnkihy.2021.055206

  • 分类号:

    TP18

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

温馨提示:阅读CAJ格式原文,请使用CAJ浏览器

下载:4 页码:48-53 页数:6 大小:254k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频