文献知网节
摘要:*Restoring clear images from hazy images is an ill-posed problem and most recent researches based on atmospheric scattering model are not work well when facing real fog pictures. We propose an algorithm based on the Conditional Generative Adversarial Network(CGAN), which is an end-to-end training network that outputs the dehazing results directly. The generator is designed as a skip connection U-Net structure, so that it can generate better results.We further modify the basic CGAN formulation by introducing the gradient loss, features loss, reconstruction loss. Instead of scalar loss, a patch-GAN loss is used to regularize the network model.Haze4 K and STOS datasets are used to train and evaluate the network. The experimental results show that the algorithm performs competitive result and better generality against the other works.
会议名称:

2021年第四届算法、计算和人工智能国际会议

会议时间:

2021-12-22

会议地点:

中国海南三亚

  • 专辑:

    信息科技

  • 专题:

    计算机软件及计算机应用; 自动化技术

  • DOI:

    10.26914/c.cnkihy.2021.055216

  • 分类号:

    TP391.41;TP183

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

温馨提示:阅读CAJ格式原文,请使用CAJ浏览器

下载:20 页码:105-111 页数:7 大小:325k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频