文献知网节

Residual Networks with Channel Attention for Single Image Super-Resolution

Yadong Wang1Junmin Wu1Hui Wang2

1. University of Science and Technology of China2. China Telecom Corporation Limited

摘要:With the development of convolution neural network(CNN),CNN-based methods also achieve a great success for image superresolution tasks. Further, ResNet makes it possible that the network of super-resolution can be trained deeply. However, simply increasing the depth or width of the network has a scant improvement on the reconstruction quality. Therefore, we need to exploit some new mechanisms to boost the quality of the reconstructed SR images.In this paper, we utilize channel attention mechanism to rescale channel-wise features and extract the desired high-frequency information. Additionally, we add feature fusion structure into the network in order to make full use of all the extracted middle highfrequency information instead of that extracted only by the final layer. Experiments we have conducted show that the network we proposed could reconstruct high quality images with only a few parameters.
会议名称:

2021年第四届算法、计算和人工智能国际会议

会议时间:

2021-12-22

会议地点:

中国海南三亚

  • 专辑:

    信息科技

  • 专题:

    计算机软件及计算机应用; 自动化技术

  • DOI:

    10.26914/c.cnkihy.2021.055306

  • 分类号:

    TP183;TP391.41

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

温馨提示:阅读CAJ格式原文,请使用CAJ浏览器

下载:10 页码:683-687 页数:5 大小:170k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频