文献知网节
摘要:In order to solve the problem that the traditional method cannot detect the anomaly well,we propose a new traffic anomaly detection method based on the theory of gravity and local outlier factor(LOF) in this paper.We improve the density peak clustering method based on the theory of gravity firstly.A new concept of potential energy is proposed,and a new potential energy-distance decision graph is used for clustering and anomaly detection.Considering the local characteristics of the sample points,we propose the concept of potential energy gradient with reference to LOF for further anomaly detection to improve the accuracy of detection.The simulation results show that the proposed method can detect more types of outliers and get more accurate results.The improved anomaly detection method has good anomaly detection performance.
会议名称:

The 9th International Conference on Computer Engineering and Networks(CENet2019)

会议时间:

2019-10-18

会议地点:

中国湖南长沙

  • 专辑:

    信息科技

  • 专题:

    互联网技术

  • DOI:

    10.26914/c.cnkihy.2019.048179

  • 分类号:

    TP393.08

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

温馨提示:阅读CAJ格式原文,请使用CAJ浏览器

下载:3 页码:1001-1008 页数:8 大小:1413k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频