文献知网节
  • 记笔记
摘要:How to construct an effective sample affinity matrix is an important problem for subspace clustering, and most existing subspace clustering algorithms pursue the affinity matrix in a single space. In this paper, we propose a novel computational framework for subspace clustering, called Complementary Subspace Clustering(CSC) at first, where the affinity matrix is constructed in a pair of complementary spaces which provide different and complementary constraints on the affinity matrix. Many existing structural priors on self representation and dimensionality reduction can be seamlessly integrated into the CSC framework. Then under this framework, we explore a simple and effective subspace clustering algorithm by respectively introducing two basic priors-sparse representation and spatial closeness-into the referred pair of spaces. Moreover, a kernel variant of the proposed clustering algorithm is present. Extensive experimental results demonstrate that although only basic priors are involved, the explored algorithms from the CSC framework can improve the clustering performances significantly when the number of the sample classes is relatively big.
会议名称:

The 2nd International Conference on Artificial Intelligence and Computer Science (AICS 2020)

会议时间:

2020-07-25

会议地点:

中国湖北武汉

  • 专辑:

    电子技术及信息科学

  • 专题:

    计算机软件及计算机应用

  • DOI:

    10.26914/c.cnkihy.2020.029097

  • 分类号:

    TP391.41

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

页码:1051-1063 页数:13 大小:1254k

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频