文献知网节
摘要:The detection of composite insulator defects in substations still relies on manual inspection.In this paper,we propose a detection method for insulator crack shape features by improving the RCNN convolution kernel.The method can meet the premise of insufficient training sample data,but also can get better CNN training effect,and finally achieve accurate crack recognition.In the training phase,the RGB three-channel decomposition method is used to expand the training data set;the median filtering method is used to remove the noise;the improved convolutional kernel is used to train the CNN;in the test phase,the images are decomposed by RGB three-channel decomposition and input to CNN to get the exact crack center coordinates and length;the NMS algorithm is used to de-weight the images to get the final crack recognition results.The example analysis shows that the method in this paper can still achieve good recognition accuracy and accurately identify the specific location of cracks under the premise of insufficient training samples.
会议名称:

The 2021 International Conference on Applied Mathematics, Modeling and Computer Simulation (AMMCS 2021)

会议时间:

2021-11-13

会议地点:

中国湖北武汉

  • 专辑:

    工程科技Ⅱ辑; 信息科技

  • 专题:

    电力工业; 计算机软件及计算机应用; 自动化技术

  • DOI:

    10.26914/c.cnkihy.2021.069104

  • 分类号:

    TM216;TP183;TP391.41

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

温馨提示:阅读CAJ格式原文,请使用CAJ浏览器

下载:2 页码:19-26 页数:8 大小:796k

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频