文献知网节
  • 记笔记
摘要:W.J.Hu提出的主分量分类器(PCC)通过最大化两类样本在分类面法方向上的投影代数和,实现样本分类.PCC是基于样本的统计平均特性,所以少量的野值对分类面方向的确定影响较小,而SVM对野值较为敏感.PCC与支持向量机相比具有较好的鲁棒性.但是PCC对野值的处理等同于其他样本,尽管有效果,但仍会影响分类面的求取,同时也缺乏直观上(或物理上)的解释,而且没有考虑随机噪声对分类面的影响.鉴于此,在PCC的基础上进行改进,引入模糊思想,设计了一组模糊型的主分量分类器,进一步弱化野值和随机噪声对分类面的影响.人工数据集和Beachmark数据集上的实验证明了新分类器的有效性.
  • 专辑:

    理工C(机电航空交通水利建筑能源); 电子技术及信息科学

  • 专题:

    自动化技术

  • 分类号:

    TP18

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:50 页码:45-50 页数:6 大小:724K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者