文献知网节
  • 记笔记
摘要:农作物害虫的精准识别是害虫预报及防控的重要前提,图像识别法以高效率、低成本、易操作等优势,成为近年来害虫防治工作的研究热点和主要技术手段。鉴于害虫图像识别在虫害诊断中的巨大潜力,回顾害虫图像识别方法的发展历程,阐述由室内环境下的识别走向自然环境的研究进展,分析传统方法与深度学习的优势与局限性,针对性给出未来发展的相应措施。传统识别方法易实现,适用在样本少、范围小的识别领域;深度学习方法精度高、自适应性强,在数据量充足的前提下可以取得较好的识别效果。最后对农作物害虫图像识别的发展前景进行展望,指出将害虫图像识别与物联网、传感器等技术相结合,共同构建农业大数据,并成为智慧农业的重要组成部分。
  • DOI:

    10.13989/j.cnki.0517-6611.2018.34.004

  • 专辑:

    农业; 电子技术及信息科学

  • 专题:

    植物保护; 计算机软件及计算机应用

  • 分类号:

    S433;TP391.41

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:511 页码:11-12+15 页数:3 大小:135K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者