文献知网节
  • 记笔记

基于光谱-空间残差网络模型的高光谱遥感图像分类

韦春桃肖博林李倩倩白风卢志豪

重庆交通大学土木工程学院

摘要:残差网络是近几年提出的一种新型深度卷积网络,通过增加网络深度提高分类的准确率,也解决了网络退化问题。基于残差学习原理,设计了针对高光谱遥感图像分类的光谱-空间残差网络模型。首先,将原始高光谱遥感数据三维立方体输入网络模型,并使用特定的卷积核对光谱特征进行降维;然后,利用光谱残差模块和空间残差按模块分别且连续地学习光谱和空间特征;最后,对提取到的特征进行池化操作并分类。此外,为规范训练数据和防止过拟合,学习过程中使用了批量归一化和dropout的方法。所设计网络模型在Indian Pines和Pavia U数据集上进行了验证实验,结果表明,所提方法有效地缓解了网络退化的问题,且在分类精度上也高于支持向量机、卷积神经网络等现有算法。
  • 专辑:

    基础科学; 工程科技Ⅱ辑; 信息科技

  • 专题:

    工业通用技术及设备; 自动化技术

  • 分类号:

    TP751;TP18

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:65 页码:42-48 页数:7 大小:2569K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者