节点文献

基于转移学习的小样本数据深度学习研究

免费订阅

【作者】 赵颖

【Author】 ZHAO Ying;Qinghai Radio and Television University;

【机构】 青海广播电视大学继续教育学院

【摘要】 卷积神经网络的深度学习在图像识别领域取得了巨大的成功,但是训练一个深度学习网络需要大量的数据样本。在实际工作中,很难得到大量的训练样本,在数据集有限的情况下,容易过度拟合。针对这一问题,设计了一种基于转移学习的深度卷积神经网络来解决小样本数据集的问题。采用数据扩充的方法来扩大样本数据集的数量,利用转移学习将训练好的网络(CNN)从大样本数据集中转移到的小样本数据集中进行二次训练,使用全局平均池而不是全连接层来训练网络,并利用Soft max进行分类。该方法解决了深度学习中样本数据集小的问题,提高了操作效率。实验结果表明,该方法对小样本数据集的分类具有较高的识别率。

【关键词】 转移学习小样本深度学习
【所属期刊栏目】 工程技术 (2019年03期)
  • 【DOI】10.14079/j.cnki.cn42-1745/tv.2019.03.004
  • 【分类号】TP391.41;TP18
  • 【下载频次】87
节点文献中: 

本文链接的文献网络图示:

浏览历史:
下载历史: