节点文献

An Optimal Sixth-order Finite Difference Scheme for the Helmholtz Equation in One-dimension

免费订阅

【作者】 LIU XUWANG HAI-NAHU JING

【Author】 LIU XU;WANG HAI-NA;HU JING;School of Applied Mathematics, Jilin University of Finance and Economics;

【通讯作者】 WANG HAI-NA;

【机构】 School of Applied Mathematics, Jilin University of Finance and Economics

【摘要】 In this paper,we present an optimal 3-point finite difference scheme for solving the 1D Helmholtz equation.We provide a convergence analysis to show that the scheme is sixth-order in accuracy.Based on minimizing the numerical dispersion,we propose a refined optimization rule for choosing the scheme’s weight parameters.Numerical results are presented to demonstrate the efficiency and accuracy of the optimal finite difference scheme.

【基金】 The Key Project (2018Z02) of Jilin University of Finance and Economics,the NSF (11701209) of China
  • 【DOI】10.13447/j.1674-5647.2019.03.07
  • 【分类号】O241.3
  • 【下载频次】1
节点文献中: 

本文链接的文献网络图示:

浏览历史:
下载历史: