文献知网节
  • 记笔记

基于神经网络的电力系统短期负荷预测研究

周佃民管晓宏孙婕黄勇

西安交通大学西安交通大学 陕西省西安市710049

摘要:电力系统负荷预测是电力生产部门的重要工作之一 ,作者利用 BP神经网络进行电力系统短期负荷预测 ,在保证有足够的训练样本的前提下 ,对预测模型进行合理分类 ,构造了相应于不同季节的周预测、日预测模型 ,并对输入变量的选择 ,特别是温度的选取问题 ,进行了讨论。在神经网络训练的过程中 ,往往会出现过拟合的现象 ,给预测的结果带来不利的影响 ,为此在训练过程中 ,将样本随机地分离为训练集和测试集来防止这个问题。典型算例的计算表明 ,该方法是有效的。
  • DOI:

    10.13335/j.1000-3673.pst.2002.02.003

  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM714

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:1567 页码:10-13+18 页数:5 大小:116k

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者