文献知网节
  • 记笔记

基于最小二乘加权融合集成神经网络的电力变压器故障识别

吕干云董立新程浩忠

上海交通大学电气工程系上海交通大学电气工程系 上海200030

摘要:摘要:提出了一种基于最小二乘加权融合集成神经网络的变压器故障识别新方法。首先对色谱分析法检测到的特征气体含量进行数值预处理,提取出故障识别所需的6个特征量,再应用5个不同结构的BP子网络分别进行识别,接着运用最小二乘加权融合算法对各个子网络的识别结果进行信息融合,最后根据融合结果来识别故障。与单个神经网络识别方法相比,该最小二乘加权融合集成神经网络可在故障特征比较类似的情况下,正确识别故障类型,且该方法的识别结果具有更大的安全间隔空间、可靠性更高。测试结果也表明了这些特征。
  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM407

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:283 页码:52-55 页数:4 大小:156k

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频