文献知网节
  • 记笔记
摘要:结合粗糙集和支持向量机两种智能算法提出了短期负荷预测模型。首先根据历史数据建立属性决策表,通过属性约简算法对数据进行挖掘,找到影响负荷的核心因素,然后将它们作为支持向量机的输入矢量来预测负荷。算例结果表明,新模型与按经验选取输入矢量的传统支持向量机模型相比,预测精度有了很大的提高且更适用于短期负荷预测。
  • DOI:

    10.13335/j.1000-3673.pst.2006.08.011

  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM715

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:747 页码:56-59+70 页数:5 大小:369K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者