文献知网节
  • 记笔记
摘要:提出了基于功率谱分解和实时气象因素的短期负荷预测方法,采用快速傅里叶变换(fast Fourier transform,FFT)对负荷序列进行变换得到功率谱,依据变换结果分析功率谱得出负荷基频、低频和高频分量的频率范围,采用有限脉冲响应(finite impulse response,FIR)滤波器从负荷中分离出各个负荷分量。分析各个负荷分量的特点,针对各个负荷分量分别设计预测模型,对基频分量采用Elman回归神经网络进行预测,这部分较好地反映出基频分量的时间序列特性;对低频和高频分量分别采用自适应线性回归神经网络进行预测,在对这部分分量的预测中重点引入实时气象因素,以利用最新的气象信息提高预测精度。通过在某地区的实际应用证明了所提出方法的有效性。
  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM715

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:420 页码:47-51 页数:5 大小:101K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频