文献知网节
  • 记笔记
摘要:介绍了实时电能质量扰动监控系统的结构,详细说明了该系统硬件和软件各个构成模块的工作原理。为实现实时在线监控电能质量扰动,首先需检测出扰动信号,然后进行分析处理。在扰动检测模块中,采用自适应线性神经元实现了对各种扰动的检测,将检测出的扰动信号送入分类模块,采用离散小波多分辨率分析提取不同尺度下的能量分布特征,同时采用分形几何学提取局部方差维数,将二者结合共同构成扰动信号的特征矢量。将提取的特征矢量送入概率神经网络实现网络训练和扰动分类。通过模拟数据测试,该系统的分类率可达到90%。另外,该系统是在CAN总线变电站自动化系统上实现的,通过调整数据的传输格式也可将其应用到其它传输平台的变电站,实现对电能质量扰动的监控。
  • 专辑:

    工程科技Ⅱ辑; 信息科技

  • 专题:

    自动化技术; 电力工业

  • 分类号:

    TM76

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:316 页码:51-55 页数:5 大小:628K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者