文献知网节
  • 记笔记

基于相似时间序列检索的超短期负荷预测

张思远何光宇梅生伟王伟张王俊

电力系统及发电设备控制和仿真国家重点实验室(清华大学电机系)上海市电力公司

摘要:针对目前超短期负荷预测算法存在的预测精度不稳定、实时性能不强等问题,从时序数据挖掘的重要方法——相似时间序列的检索出发,结合负荷自身的周期性变化规律,提出了一种新的超短期负荷预测方法。该方法具有简单实用的坏数据处理机制;通过扩展负荷序列相似的概念有效地增加了预测样本的数量,提高了预测样本的质量;对预测值的加权处理抵御了单样本预测带来的风险,使预测的精度稳定在一个较高水平。实际应用结果表明,该方法的预测精度高、稳定性强,能较好地满足电力系统各方面的需求。
  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM715

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:652 页码:56-59 页数:4 大小:615K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者