文献知网节
  • 记笔记
摘要:支持向量机(support vector machine,SVM)对于核函数及模型参数十分敏感,多核学习可降低模型的参数敏感性。提出了基于二值粒子群优化(binary particle swarmoptimization,BPSO)的多核学习SVM分类方法(BPSO-MKSVC)进行变压器故障诊断。多核学习支持向量机(multi-kernel support vector classifier,MKSVC)采用由多个基核线性组合的多核进行学习,其中每一个基核完成从特定样本空间提取故障特征,通过多面故障特征的线性组合,将学习分类问题转化为相应的凸规划问题进行迭代求解。采用BPSO优化算法对MKSVC中的基核数及模型参数进行优化,实现了参数的自主选择。与常用诊断算法相比,BPSO-MKSVC具有更高的诊断精度;与PSO优化的SVM方法相比,其具有更低的参数敏感性和更好的鲁棒性。
  • DOI:

    10.13335/j.1000-3673.pst.2012.07.032

  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM407

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:506 页码:249-254 页数:6 大小:233K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者