文献知网节
  • 记笔记
摘要:为了提高光伏系统的发电效率,同时降低人工维护的成本,提出了一种基于BP(back propagation)神经网络的光伏组件在线故障诊断策略;分析了光伏组件短路和异常老化故障的成因,并在Matlab中对光伏组件故障状态下的输出特性进行了仿真研究。根据仿真结果并结合光伏组件的数学模型,总结了光伏组件的故障规律,建立了BP神经网络故障诊断模型及模拟光伏组件各种故障的仿真模型。用该模型采集了适合神经网络训练的样本,并对神经网络诊断模型进行了训练。结合光伏功率优化器,进行了组件在线故障诊断的仿真和实验研究,结果验证了文中方法的正确性、有效性和环境适应性。
  • DOI:

    10.13335/j.1000-3673.pst.2013.08.024

  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM615

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:1653 页码:2094-2100 页数:7 大小:1146K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者