文献知网节
  • 记笔记
摘要:针对未来低压电网剩余电流保护与动作技术中,如何检测触电时刻并识别总泄漏电流中人体触电支路电流信号的难题,利用数字信号的智能处理技术和具有自适应性与最佳逼近特性的组合神经网络有机结合,提出了一种触电电流信号的自动检测方法。在对低压电网中原总泄漏电流信号进行小波消噪基础上,实现了触电时刻的自动检测,触电故障模式分类归属的决策;同时从总泄漏电流中提取触电电流幅值波形。仿真实验表明:该方法速度快且稳定,模式分类正确率达100%,提取幅值与实际值的平均相对误差为3.65%,计算时间为0.064 68 s,具有良好的适应性和实用性,对于开发新一代剩余电流保护装置具有重要的参考价值。
  • DOI:

    10.13335/j.1000-3673.pst.2013.08.008

  • 专辑:

    理工C(机电航空交通水利建筑能源); 电子技术及信息科学

  • 专题:

    电力工业; 自动化技术

  • 分类号:

    TM76

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:402 页码:2328-2335 页数:8 大小:888K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者