文献知网节
  • 记笔记
摘要:噪声干扰是影响电能质量暂态扰动识别准确率的最重要因素。经过S变换后获得的扰动信号的模时–频矩阵具有灰度图像特点。因此,可通过二维数学形态学方法,滤除噪声干扰,获得更高的识别准确率。首先,针对扰动信号时–频分布特点,设计具有不同时–频分辨率的多分辨率快速S变换方法以降低运算量、提高特征表现能力;之后,在阈值滤波基础上,根据信号时–频分布特点,选择线段型、零角度结构元进行灰度级形态学开运算,进一步滤除高频频域噪声;最后,从原始信号、信号傅里叶谱、多分辨率快速S变换模矩阵中提取5种特征建立决策树分类器,识别含噪声信号与6种复合扰动信号在内的12种电能质量信号。通过仿真对比实验发现,新方法具有更好的抗噪能力,更加适用于低信噪比环境下的电能质量信号识别。
  • DOI:

    10.13335/j.1000-3673.pst.2015.05.036

  • 专辑:

    工程科技Ⅱ辑

  • 专题:

    电力工业

  • 分类号:

    TM711

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:627 页码:1412-1418 页数:7 大小:838K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者