文献知网节
  • 记笔记
摘要:对不同故障下光伏组件内部等效参数和外特性电气参数进行特征提取,分别采用改进人工鱼群算法优化径向基函数神经网络(improved artificial fish swarm algorithm-radical basic function neural network,IAFSA-RBFNN)算法和相关向量机(relevance vector machine,RVM)算法,建立了基于内部等效参数和外特性电气参数的4种光伏组件故障诊断模型,用于光伏组件的初步故障诊断。在此基础上,提出了一种基于改进证据相似度的光伏组件数据融合故障诊断模型,将上述4种模型的诊断结果作为该改进数据融合算法的基本概率分配(basic probability assignment,BPA)函数值,在决策层进行融合诊断输出,仿真和实验结果验证了上述方法可有效提高故障诊断的精度。
  • DOI:

    10.13335/j.1000-3673.pst.2016.2294

  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM615

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:596 页码:1864-1873 页数:10 大小:586K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者