文献知网节
  • 记笔记
摘要:针对售电公司实现多样化服务类型,吸引更多用户的需求,提出了一种基于差异化特征提取的用户分层聚类方法,并对传统的k-medoids聚类算法进行改进,实现了聚类数目可变的自适应k-medoids算法。分层聚类中第1层聚类先基于马尔科夫模型提取代表用户用电行为多样性的用电特征,并运用自适应的k-medoids聚类算法实现对用户用电行为多变与否的识别。第2层聚类首先针对第1层聚类得到的各类用户提取差异化的用电特征,接着分别运用合适的聚类算法实现用户的再次分类。最后,为两层聚类后的子类用户推荐合适的电价套餐。实验结果表明,基于该差异化特征提取的分层聚类方法能够为售电公司实现有效的用户差异化套餐推荐服务,进而为吸引更多用户购电、扩大售电公司规模提供技术支撑。
  • DOI:

    10.13335/j.1000-3673.pst.2017.1226

  • 专辑:

    理工C(机电航空交通水利建筑能源); 经济与管理

  • 专题:

    工业经济; 企业经济

  • 分类号:

    F274;F426.61

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:1074 页码:447-454 页数:8 大小:681K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者