文献知网节
  • 记笔记
摘要:油色谱数据及其变化趋势是评估变压器健康状态的重要依据。现有研究表明,深度信念网络(deep belief network,DBN)在油色谱数据预测领域已取得一定成果,为变压器的运行维护提供了参考。但在实际应用过程中,仍存在因网络结构限制导致油色谱时域相关性表述不充分的情况,其预测结果呈现显著的"时移"误差,从而使得基于该方法的设备状态预测结果与实际不符。针对此问题,提出了一种面向油色谱预测的深度递归信念网络算法(deepre current belief network,DRBN),该算法构建了具有时序关联特征的深度网络结构,使预测结果呈现的"时移"误差得以消除,更新了误差的迭代修正过程,使误差在网络层间和层内得以同时流动,从而提升了预测准确率。测试结果表明,文中所提出的方法可以有效克服"时移"误差,其预测准确率可达95.16%以上,为变压器的状态预测和故障预判提供了依据。
  • DOI:

    10.13335/j.1000-3673.pst.2019.0030

  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM41

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:323 页码:1892-1900 页数:9 大小:601K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者