文献知网节
  • 记笔记
摘要:随着电网调控一体化的全面推进,针对低价值密度故障数据的有效诊断成为实现电网自愈化的关键。该文提出了一种基于最大熵隐马尔科夫模型(maximum entropy hidden Markov model, ME-HMM)的电网故障诊断方法,该方法首先对调度中心所接收到的遥信信息进行去噪解析,并基于保护-断路器关联关系定义了待诊断信息类型以及异常信息模式,然后结合电气量信息和开关量信息构建特征函数向量,并通过训练ME-HMM模型对故障数据所隐藏的异常模式进行挖掘。通过实例分析证明该方法能够实现对原始故障数据的精简,有效识别包括信息畸变、保护断路器不正确动作在内的异常信息,从而提高电网故障诊断效率。
  • DOI:

    10.13335/j.1000-3673.pst.2018.0776

  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM727

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:324 页码:3368-3375 页数:8 大小:1023K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者