文献知网节
  • 记笔记

基于实时电价和加权灰色关联投影的SVM电力负荷预测

赵佩1代业明2

1. 青岛大学数学与统计学院2. 青岛大学商学院

摘要:精准的电力负荷预测有助于保障电力系统的安全调度和稳定运行,支持向量机作为一种良好的预测工具被广泛应用于电力负荷预测。随着智能电网的快速发展,实时电价成为电力负荷的重要影响因素,因此在应用支持向量机进行电力负荷预测时,引入实时电价这一影响因素,同时将加权灰色关联投影算法应用于节假日的历史负荷序列的选择,并采用改进的粒子群算法优化模型参数,最终得到一种实时电力负荷预测方法。以新加坡的电力数据为例进行实时电力负荷预测,并与通过反向传播神经网络得到的预测结果进行对比,结果表明所提出的方法具有较高的精确度和稳定性。
  • DOI:

    10.13335/j.1000-3673.pst.2019.0942

  • 专辑:

    理工C(机电航空交通水利建筑能源); 电子技术及信息科学

  • 专题:

    电力工业; 自动化技术

  • 分类号:

    TM715;TP181

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:500 页码:1325-1332 页数:8 大小:637K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者