文献知网节
  • 记笔记
摘要:对区域多风电场功率的概率预测有利于应对大规模风电并网现状下风电功率的随机性和波动性。通过建立基于径向基神经网络的分位数回归模型,实现了气象预报变量和风电功率间的非线性映射,得到了分位数形式的短期概率预测结果。针对区域风电数据维度高的问题,提出用交替方向乘子算法进行模型参数优化,从而提高了高维度模型的计算效率。提出了基于区域风向聚类的机制转换模型,对不同风向特征的样本进行独立建模,进一步提高了预测效果。以华东28处风电场为例,通过对可靠度、锐度和Pinball分数3个评价指标进行对比分析,标明所提预测方法相比传统预测方法取得了更好的概率预测效果。
  • DOI:

    10.13335/j.1000-3673.pst.2019.0374

  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM614

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:312 页码:1368-1375 页数:8 大小:1173K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者