文献知网节
  • 记笔记
摘要:为充分挖掘负荷数据中时序性特征的联系,提高负荷预测的精度,提出了一种基于卷积神经网络(convolutional neural networks,CNN)和门控循环单元(gated recurrent unit,GRU)混合神经网络的负荷预测方法。以日期因素、气候因素、相似日负荷因素构建特征集作为输入,首先采用k-means聚类方法对地区内的样本数据集进行分组;再运用CNN网络提取特征与负荷在高维空间的联系,构造时序序列的高维特征向量,并将结果输入到GRU网络中;最后训练各组GRU网络模型的参数并输出负荷预测值。使用该方法对浙江省某地区电力负荷数据进行预测,结果表明,所提负荷预测方法与长短期记忆(long short-termmemory,LSTM)网络模型、GRU网络模型、CNN-LSTM网络模型、支持向量机回归模型及决策树模型相比,在预测精度与预测效率方面具有显著优势。
  • DOI:

    10.13335/j.1000-3673.pst.2019.2058

  • 专辑:

    理工C(机电航空交通水利建筑能源); 电子技术及信息科学

  • 专题:

    电力工业; 自动化技术

  • 分类号:

    TM715;TP183

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:735 页码:3416-3424 页数:9 大小:912K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频