文献知网节
  • 记笔记
摘要:随着大数据时代的到来,基于深度学习技术的机器学习方法被用于有效地分析和处理这些数据。本文首先概述了深度学习技术的由来,对比了浅层结构与深度结构模型的差异,分析了深度结构模型在大数据应用中的优势;认为深度学习取得成功的条件是,大规模训练数据集的支撑、先进的硬件平台支持、新的优化技术的提出;基于计算机视觉应用,从有监督特征学习和无监督特征学习两个方面分别介绍了当前深度学习研究的现状和典型的深度结构模型的基本原理和主要应用;针对当前深度学习的发展现状,总结了深度学习研究存在的挑战和未来的研究方向。
  • 专辑:

    理工C(机电航空交通水利建筑能源); 电子技术及信息科学

  • 专题:

    计算机软件及计算机应用

  • 分类号:

    TP311.13

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:4386 页码:233-243 页数:11 大小:1886K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者