节点文献

基于紫外-可见光谱国标Ⅰ级水净化系统的设计与实现

免费订阅

【作者】 张恒之马洁贾文珅王纪华

【Author】 ZHANG Heng-zhi;MA Jie;JIA Wen-shen;WANG Ji-hua;Beijing Information Science and Technology University;China Department of Beijing Research Center of Agricultural Standards and Testing;Beijing Municipal Key Laboratory of Agriculture Environment Monitoring;

【通讯作者】 贾文珅;

【机构】 北京信息科技大学北京农业质量标准与检测技术研究中心农产品产地环境监测北京市重点实验室

【摘要】 国家标准规定的Ⅰ级水是分析实验室常用的试验用水,为快速、准确的实现纯水水质分析,为分析实验室设备自动化、智能化提供科学依据,采用全波段(200~900 nm)紫外-可见光谱分析技术,设计了基于紫外-可见光谱国标Ⅰ级水净化系统(NSGI-WPS)。该系统以树莓派为核心控制器,光谱探测器、电导率传感器为采集模块,改良的硅钼蓝分光光度法为可溶性硅测定方法,实现了对分析实验室用水254 nm吸光度、电导率和可溶性硅含量的同时在线检测。在痕量硅含量的测定试验中,为了消除噪声干扰对试验的影响,系统采用Savitzky-Golay平滑去噪法对光谱进行预处理,通过窗口宽度和多项式次数的不同组合形式,获得了80组平滑后的光谱数据,将其分别与0.004, 0.006, 0.008, 0.010和0.012 mg·L-1硅标准溶液浓度进行一元线性回归分析后,得到单波长吸光度与硅标溶液浓度的相关光谱。试验结果表明,当窗口宽度为17,多项式次数为2时,相关光谱的特征峰宽度最宽,特征峰区间为796~824 nm,特征峰峰值所处波长与平滑后的显色溶液吸收光谱峰值波长一致。通过比较不同硅标准溶液的显色溶液吸收光谱分布,发现硅标液浓度与吸收光谱呈线性正相关,因此,试验选取812.638 nm为最优特征波长。为了建立可溶性硅含量与显色溶液吸光度的关系模型,以加入的硅标准溶液浓度为横坐标x, 812.638 nm处显色溶液的吸光度为纵坐标y,绘制了其工作曲线,曲线的决定系数R2=0.999 6,表明了模型具有较强的拟合能力。此外,编写的NSGI-WPS系统管理软件实现了参数的实时处理和自动控制,对未达到分析实验室国标Ⅰ级水用水规格的纯水通过反渗透(RO)、连续电去离子技术(EDI)、混合床离子交换树脂和紫外光氧化等技术处理,实现了对纯水的严格控制。通过对比分析自来水、Ⅲ级水、Ⅱ级水在净化前后各参数变化,发现净化后各参数数值下降显著,其中,电导率最高下降幅度可达99.94%,各参数的相对平均偏差均小于2%。试验结果表明,基于紫外-可见光谱分析法的NSGI-WPS系统具有净化能力强、准确性高、鲁棒性好等优点,经过检测、分析和净化后的纯水满足分析实验室国标Ⅰ级水用水要求。本文为紫外-可见光谱分析法在纯水净化系统中的应用做出了探索性研究。

【关键词】 紫外-可见光谱Ⅰ级水净化系统多参数
【基金】 国家自然科学基金项目(61273173)资助
  • 【分类号】O657.32;O661.1
  • 【下载频次】17
节点文献中: 

本文链接的文献网络图示:

浏览历史:
下载历史: