文献知网节
  • 记笔记
摘要:建筑的能耗受到如季节、建筑的构造结构等多种因素的影响,目前对一栋建筑楼实现能耗预测往往采用单一模型,往往无法得到相对准确的结果.为了更好地描述建筑能耗规律,以南方某地为研究区域提出一种基于ARIMA和BP神经网络的复合模型,模型的实例数据来源为南方某地某市政办公楼近两年的能耗月数据.首先,通过ARIMA建模得到能耗值的拟合误差序列,再用BP模型修正误差值得到最终预测值.结果表明:复合预测模型的平均相对误差为0.278 3%,而单一模型则高达2.657 8%,复合模型的预测效果远优于单一模型,为准确实现建筑节能提出了一种新思路.
  • DOI:

    10.16375/j.cnki.cn45-1395/t.2018.03.005

  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    建筑科学与工程

  • 分类号:

    TU111.195

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:137 页码:30-36 页数:7 大小:1278K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频